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Full Waveform Inversion algorith it

Misfit functional L obs acals 2
E(m) =< |d°*- d* (m)|
9 D
g°rs - the receivers data;
m - the current model parameters;
d®(m) - wavefieldcomputed in receivers for the current model; in this talk

we deal with frequency time domaiD isotropic elastic media.

*Virieux J. andOperto, S. Aroverview of fulwaveform inversion in exploration geophysics
Geophysics/4 (6), WCQ-WCQ6.

25.09.2018 Russian Supercomputer D318 4



G
i:i:: 4 oy -‘:4

"*f Russian Supercomputil

In Frequency Domain, the misfit functional gradient (the case of scalar wave equation):

PE(m) =- 2ReVF‘1/:/2U (X, Y, Z WW (X, Y, Z W)dw

1

"Moo ) - wavefieldcomputed for the current model for a specific source position
w ool - wavefieldfor the current model for the registereevavefieldtaken as sources

In a case of several sources the gradients to sum up.
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ANeeded a method for effective computimgavefields

Alnput: model parameters, source/receivers positions, a set of
frequencies

AOutput: thewavefieldin the target domain
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Equations and parameters

We use elastic wave propagation equation for isotropic 3D media
|. (plzxs 0\ (0 PYa (0 @i_ 0 R\2 —
L_[Em( 0 Sﬁxﬁ) (ﬁ?" U)ax (@T {])ﬂy v(@) (FET {})5zlv /

where vector of unknowns v comprises nine components. These components include
the displacement velocities (v, vy, v,) and components of the stress tensor

(Oxx, O Oxz» Oxy)- @ 18 the real time frequency, p(x,y, z) 1s the density, Isy;

yy?
1s 3 by 3 identity matrix, Sgy6(x, v, 2) = (é 2) is 6 by 6 compliance matrix and
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Coetticients a(x,y,z), b(x,y,z) and c(x,y, z) are related to the Lame parameters A
~ 1 . A+ . A - . . -

and u as follows a = (2pt3l) b= 2wy ST M f 1s the right-hand side repre

senting the seismic source. In our experiments, we consider either a volumetric or ver-

tical point-force source. y(z) may be either unity or the damping along z representing
the Perfectly Matched Layer (PML)

Computational domain is @uboidof NxxNyx Nzpoints. This domain includes
sponge layersy] on the horizontal and PML on the vertical boundaries (top and
bottom) imitating an elastic radiation condition at infinity. The top boundary can be
also the free surface. W,

Computational domain (green), sponge layers (blue),
PML (red)
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Equations angarameters: preconditioningims

Let |y be the same operator as L , but with

p(x,y,z) = po(2), Sexe(x,¥,2) = (1 +if) - So(2)

where
A 0 (10 _bﬂ _bﬂ Cﬂ U 0
So(2) = ( OD C ) Ao =|—by a, —by|,Co=10 ¢ O
0 _bo _bn an 0 0 CO
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Equations angarameters: preconditioninggzzss
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We use operator L, as the preconditioner and search for solution v of the original
boundary value problem by solving the 2™ kind Fredholm integral equation

LLG'Y = f (4)

with the same boundary conditions as for equation (1). Finally, we compute unknown
v by formula v = L;'9¥. Denoting §L = L — L, and substituting it into equation (4) we
arrive at

(I —SLLHYY = f, (5)

where 6L 1s the zero-order operator — pointwise multiplication by a matrix. This 1s valid
because we consider equation (1) with the compliance matrix.

We solve equation (5) via a Krylov-type iterative method. From the variety of them.,
we choose the biconjugate gradient stabilized method (BiICGSTAB) [25] because of its
moderate memory requirements.
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Equations angarameters: preconditioninCii s

This assumes computing several times per iteration (depending on a method)

product of the lefthand side operator of equatiorb) by a particular vector, I.e.
computing P& 00,10 ]. This process breaks down into three computational st

1. first, computing);=0,°!0 by solving boundary value problewgg,=0 ;
2. then, computing),3 0n,, that in the discrete case ispmintwise
multiplication of atridiagonalmatrix by a vector;

3. finally, subtracting the two vectors Fn,].
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Equations angparameters: preconditioninCiEg i,

To solva)y,=0 we assume that functiorr (wwQ) is expanded into a Fourier series with respe
to the horizontal coordinates with coefficien@, Q &), where' Q and Q are the respective
spatial frequencies. These coefficients are solutions to the boundary value problems for or
differential equations (ODES)

: )OUI3><3 0 15_ 0 é . O ﬁiﬂ_h
“’”( 0 50) e (PT 0) ka"(@“? 0) y(z)(R“T o)az]v_w’ ©)

We solve it numerically, applying a fini#ference approximation, that results in a system of
linear algebraic equations (SLAES) with a banded matrix, whose bandwidth depends on th
order of the finitedifference scheme. In this case, computationd'ﬁyfgyd) can be performed
via the2D Fast Fourier Transform (FFT) and afi®;'Q,d) are found 0,21 can be computed
via the invers&D FFT.
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Parallelization has three levels:

Highest level.

The FWI for macro velocity reconstruction involves simulations for diffeeist
mic sources at different low frequencies. This means, that in fact, many bounc
value problems for equatiorij are solved at the same time, each having its ow
right-hand sidel Since they are solved independently of each other, we solve
each one with a separate MPI process, assigned to a single node or a group
cluster nodes. This is the highest level of our parallelization strategy. There ar
communications between these MPI processes. Assuming that all computatic
nodes have similar performance, this parallel process scales very well. This i<
we do not mention this level of pallelizationin subsequent tests and consider
the case of one seismic source and one frequency only.
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Second level:

Four computational processes includikgyloviteration method, the2D forward
and inverse FFTs and solving the boundary value problem for equéjiandinly
drive our solver. We decompose the computational domain along one of the
horizontal coordinates and parallelize these processes via MPI. The main
exchanges between the MPI processes are while performing FFTs. For comp

t
C

nem, we use the Intel MKL librar§d] supporting the decomposition along one
Irection only. In principle, the decomposition along the second horizontal

C

Imension may be also applied with minor corrections of the code usiiy BFT

realization, supporting this functionality. Decomposition along tiur&ction is
not that obvious, since this involves solving each boundary value problems fo
equation @) in parallel.
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Third level:

Following this strategy, each MPI process would independently solve its own
set of 0 AU WU (U ¢ the number of MPI processes) problems. We solve

them in a loop, parallelized via OpenMP.

Schematically, our parallelization strategy Is presented In Figure:

6"&@ S
L J & y k
V4 w3 3
b‘ﬁi“ / /
Z 4 OpenMP:
loop by k, and k,,
7" > for solving ODEs (4)
'/ y
//
MPI1: BiCGSTAB,

2D FFTs, ODEs (4)

Figure. Parallelization strategy
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Now | present the results of scaling analysis for both MPI and OpenMP. All re
oresented here have been computed on a HPC cluster comprising nodes witl
Ly St T 52682 @P40BMHz CPUs and interconnected wiB GbFDR
nfiniBandHCA. Double precision floating point format has been used in the
computations.

This Is necessary, when dealing with vectors of huge dimensions, for instance
computing their dot product. As a stopping criterion for BEEGSTABve used a
103 threshold for the relative residual of thg-horm providing enough accuracy
for FWI applications.
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Parallelization: Strong and Weak Scallg

The model used for numericakperimets 3D SEG/EAGHerthrustmodel
(19.8x19.8x4.65km).
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Themodelwasdiscretizedwith a uniform grid of 957x 169x 651 pointswith a
lateral cell sizeof 25 m anda verticalcellsizeof 10 m. Thesourcewasplacedin
the middle of the areaat 10 m depth. In the next slidewe presenta 3D view of
the vertical velocityat 5 Hzand 10 Hz computedwith the iterative solver To
obtaintheseresultswe used18 computationalnodeswith 4 MPIprocesseger
node and 7 OpenMPthreads per MPI process Thetotal computationaltimes
for the 5 and 10 Hzsolutionsare 32 and 108 minutes,respectively
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6000 m/s

I 4089 m/s

2179 m/s

RAM needed420GB. 66 iterations to converge
# of MPlprocesses/5.
Time per one source4 min
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ASEG/EAG@&verthrustsubmodel(5 Hz)
X O

—_— 1.

0.5°

-0.5f
7|

1k

>z

Red linec solution obtainedafith FD TD method 6000 m
Blue line- solution obtained by the iterative solver
in frequency domain

80 iterations to converge
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