(intel‘) Look Inside"

Intel® Advisor XE Future Release | Ard ‘

Threading Design & Prototyping
Vectorization Assistant

Parallel is the Path Forward

Intel® Xeon® and Intel® Xeon Phi™ Product Families are both going parallel

g - . 43

Intel® Xeon® Intel® Xeon® Intel® Xeon® Intel® Xeon® Intel® Xeon® Intel® Xeon® Intel® Xeon® Intel® Xeon Phi™ Intel® Xeon Phi™
processor processor processor processor processor processor processor coprocessor processor &
64-bit 5100 series 5500 series 5600 series codenamed codenamed BEEGENEE Knights coprocessor
Sandy Bridge Ivy Bridge Haswell Corner Knights
EP EP EP Landing®
Core(s) 1 2 4 6 8 12 18
Threads 2 2 8 12 16 24 36 244 288
SIMD Width 128 128 128 128 256 256 256 512 512
*Product specification for launched and shipped products available on ark.intel.com. 1. Not launched or in planning.

More cores - More Threads - Wider vectors

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Don’t use a single Vector lane!

| | N

1 [e Trpp—

To fully utilize the hardware you need to:
« Parallelize and
* Vectorize

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

How much potential lies untapped today?

140 000 A
120 000
100 000

Binomial Options SP (Higher is Better) 179x

80 000

Options Per Sec

60 000
40 000

20000

2007 2009 2010 2012 2013 2014

Intel® Xeon™ Intel® Xeon™ Intel® Xeon™ Intel® Xeon™ Intel® Xeon™ Intel® Xeon™
Processor Processor Processor Processor Processor Processor
X5472 X5570 X5680 E5-2600 E5-2600 v2 E5-2600 v3

formerly codenamed formerly formerly family formerly family formerly family formerly
Harpertown codenamed codenamed codenamed codenamed codenamed
Nehalem Westmere Sandy Bridge Ivy Bridge Haswell

Parallel + Vectorized is much faster than either one alone

i—

o —

Parallelized Vectorized
v v
v Scalar
Single Thread v
Single Thread Scalar

Configuration info on

Configurations for
Binomial Options SP

slide at the end
of this presentation

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to

http://www.intel.com/performance

4

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

http://www.intel.com/performance

Permission to design for all lanes

Threading and Vectorization
g p
| 1

! '(a
| . EEENE Bl
!

», TP
=
ey
= — — == \§
— A
g
= =
=1
e

Data Driven Threading Design
Intel® Advisor XE — Thread Prototyping

Have yOU] Scalability of Maximum Site Gain Loop lterations (Tasks) Modeling
= Tried threading an app, but seen little ol . Tar " Danaion
performance benefit? 2] T : s B
= 3 = [O I Malk ekl
= Hit a “scalability barrier”? Performance gains E 8 | L0, 1200
level off as you add cores? . W AT 0 Téi”s”” T'?i“”‘”””l‘)
= Delayed a release that adds threading because & 7§ ' 5 i

of synchronization errors?

Breakthrough for threading design: Terget CPU ot
. .) Part of Intel® Parallel Studio
= Quickly prototype multiple options For Windows* and Linux* From $1,599

= Project scaling on larger systems

» Find synchronization errors before
implementing threading

= Separate design and implementation -Design Simon Hammond

)) J Senior Technical Staff
without d|srUptmg devel()pment Sandia National Laboratories

“Intel® Advisor XE has allowed us to quickly prototype
ideas for parallelism, saving developer time and effort”

Add Parallelism with Less Effort, Less Risk and More
Impact http: //|ntel ly/advisor-xe (intel 5

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

http://intel.ly/advisor-xe

In Beta

Data Driven Vectorization Design <oon
Intel® Advisor XE — Vectorization Advisor (uture release) Sign-u.p!

Have you : ¥ Threading and Vectorization Survey o

= Recompiled with AVX2, but seen little benefit? T e T] O

Fuxction Call Sites and . Memary CompHle Weltanzation B L)
Seif Time - Total Time Vecoraed Loogs
Locps amalyss Gan Estimate

= Wondered where to start adding Vectorization? | waese. oo soou e e

b [Joop at mevull_wnael cp 0000 10100 “Lalw e

= Recoded intrinsics for each new architecture? {mquimme oo Sl e B .
= Struggled with cryptic compiler vectorization o

o . . 1 £\ 0 B wecation
Purction Cull Stes ane LAl Time Toral Tre Seif Titne Hit Vedtor

messages? e : e i ot

[Sota) 100.0% 10,100s 0%

t_.‘@i;f:‘""nf"";.fﬁfﬁ O 30208 == 7l
. . . o |loop = _lite_st 100, 0% 10.100% 0% e
Breakthrough for vectorization design o L R g
=0 [eop atm 100.0% 10,1005 Os . 282 Mmmut sen .. 1 o
= What vectorization will pay off the most? T T B

= What is blocking vectorization and why?

= Are my loops vector friendly?

= Will reorganizing data increase performance?
= |s it safe to just use pragma simd?

More Performance
Fewer Machine Dependencies

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

7

Vectorization Advisor

Providing the data you need for high impact vectorization

Compiler diagnostics + Performance Data = All the data you need in one place
» Find “hot” un-vectorized or “under vectorized” loops.

= Convince the compiler to vectorize

Recommendations — How do | fix it?

Correctness via dependency analysis

» |s it safe to vectorize?

= Data on specific variable causing the loop dependency

Memory Access Patterns analysis

= Unit stride vs Non-unit stride access, Unaligned memory access, etc.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Vector Advisor Survey: all in one place

= - : Memory Compiler Vectorization Vectorized Loops
unction Call Sites and Loops Self Timew — Total Time Analysis e — e N\ e
p Type y No Ve... Gain Estimate | Vecto... Vectonzation Traits
=11 [loop at nbody.cc:57 in main] 1.820s@ 1.820s @ <Expand to see ... | <Expand t... <Expand tos..] AVX Square Roots; Inserts; Extracts; Masked Stoi
i [loop at nbody.cc:57 in main] 1810- @0 1,810- @B =l Vectorized (Body 2,00 AVX Square Roots; Inserts; Extracts; Masked Stores
i>[loop at nbody.cc:57 in main] 0,010s1 0,010s| - Peeled
i> [loop at nbody.cc:54 in main] 0,000s1 1820- @8 [l Scalar inner loop ... AVX Shuffles; Inserts; Extracts
i’ [lcop at nbody.cc:54 in main] 0,000s1 1,820s @B =l Scalar inner locp ...
- —-
Source | Ra
Line Source Total Time % Loop
52 void Newton(size_t n, real dt) { .
53 canat Teal dt6 = dL Gl Loop body/peel/reminder
54 for (size_t i =0; i < m; 441) { break-down and grouping 3 640,
55 real dvx = 0, dvy = 0, dvz = 0;
56 /é#pragma vector always
57 or (size t 31 =0; J <mn; ++3) { 10,110ms | 3 640,

Scalar 1i¢

ize VX 1 Floaté4; In¥s2; UInc32 data t

Suggestions and
OpenMP4 snippets

Top-down function-

Source tab
loops tree

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

What Makes Vectorization Difficult?

« Non-contiguous memory access — Potential to vectorize but may be inefficient
= Non-unit strided access to arrays
for (i=0;i<N;i+=2) //Incrementing “i” by 2 is not unit-stride
» |ndirect reference in a loop
for (i=0;i<N;i++)

A[B[i]] = C[i]1*D[i]; //We have to decode B[i] to find out
//which element of A to reference

« Data dependencies
for (i=0;i<N;i++)

A[i] = A[i-1]1*C[i];

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Compiler diagnostics + Performance Data
Find "hot” un-vectorized or “under vectorized”

loops

% Threading and Vectorization Survey D Intel Advisor XE 2016
” f h Iy xbur-tyﬂeuoﬂ N Cotreciness Report 4 Annotation Repont tat Re
m O t e Filter by Loop Type | Vectorzed Not Vectorized Filter bar Fater by Source | All v | Filter by Module | All v n
M H Compiler Vectonzation oy, = ~
information vou Function Call Sites and Loops Sef Timew TowsiTeme & Sz e
Fla Loop Type Why No Vectorization? Gain ... L0095
- = = [floop at loopstlepp: 1069 in s127) 0.04050 0.040s! <Expand to see .. <Expand to see mor .. <Exp.. AVX
require tO vectorize |mmErsrrmTms 003s0 | 00si | W [Vecsorsed (Body) | vectonzation support .| 188 | AVX
Vector op procesaling F ; Fleatéd da typeis) having Permutssy Inssrts; Extracts operations
'| bl %o mationa vese spplied "

aval a e 0 n O n e i [loop st loopstl.cpp: 1068 in 5127) I Loop summary t.owu 0.010s1 Resmander

il [loop at mains £:354 in SETID] 03050 0.030s 4 ¢ 1 Vectonzed (Body) 300 SSEss&2
SC re e n I 1 [loop ot loopsth.cpp:2?5 in 3112 0.030s9 0.030s1 | Vectorized (Body) vectorization support .. 1,51 AVX v

< ' >

Top Down /\

. Compiler Vec Loop details:
Function Call Stes of SOuUrce and aSS@mb‘y views }nl Time % Total Time Sef Time i
Lecp Type | = Self and total time
il omfone) B - Compiler VEC/OPT report
RtiUserThreadStart 100.0% G 1951 O« 5 : X
= BaseThreadini Thunk 1000% @8 1.951s @ Os - Compiler gain estimate
ImainCRTStartup W5l 1941600 0s - Vectorization traits
- main HIANED 1 4E Os g)
UNNAMED_MAN QSKEE 1541 0s - Vector instruction set
=17 Hloop at mains.F157 in UNNAMED_MAIN] NSLED 14 Os Scalar
9.2%10 0.180s0 0s
Top-down function-loops tree] < B 01688 Do 5 2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimization Notice

=

Gives estimated expected gain!

¥ Threading and Vectorization Survey o

Gain estimates — Gives R < °7°y e
. Filter by Loop Type Vectonzed Not vectorized
recommendations and the

Seif Total Me. Compller Vectarization = vectorized Loogs
H H PEten caH Shes A LOCRS Time Time an. \ec.. GainEst_ Loop Type VeCTOr INSLIUCEon... Vectonzation Traas
el.. J u v L (ad 1
gal n you Can eXpeCt by USIng =11 [loop at nbody.cc:56 In Newton] 12.1... 12.1... 3.12695 Vectorized (Body) AVX; AVX2: FMA Square Roots; Permutes; Inserts; Extracts; Masked Stores

th self time = 12

a different vector instruction V18 VeI Lo 1 SIS

| by Compiler using AVX; A

Wi MA ad processing Flost32) Flostf4; Inta2; Int64; UIntld8; WInthHd cata typeis)
i < 2 formation availeble. During optimization phases no transforsations were applisd
or rewrltlng the Contr0| ﬂOW Of b [loop at nbody cc:54 In maen 0.0005 12.150% AVX; AV Shutfles; Insorts; Extracts
b {loop at nbody.cc:8% in masn) Q.000s 12.150
your program' P {foop In bC_Sstart_main| 0.000s 121508

% Threading and Vectorization Survey o

Filter by Loop Type \Vectorized Not Vectorized

y Compiler Vectorization @ vectorized Loops
Function Call Sites and Loops Self Time Total Time
Ve, Gain Estimate Loop Type BClOr InStruction Set Vectorization Traits
b 1 (loop at nbody-split.cc:56 in Newton)| 35508 31,5308 7.89062 Vectonzed {Body) AVX; FMA Square Roots; Extracts
er——————

= [loop at nbody-split.cc:64 in Newton) 3.240s 3.240s <Expand to see mor... <Expand to see mor... AVX; FMA Square Roots; Extracts

b 11 [loop at nbody-sphit.cc:64 in Newton] 3.220s 3.220s 7.89062 Vectonzed (S8ody) AVX; FMA Square Roots; Extracts

b [loop st nbody-split.cc:64 in Newton) 0.010% 0.010% almost perfer.t Remaindes no masked

- {loop a2 rbody-Split<Ci6d In New! 10108 00108 estimated gain operations

b {loop in __libc_start_main] 0.000s 6.790s
b [loop at nbody-split.cc:54 in Newton) 0.000s 6.790s AVX: AVX2 Shuffles; Inserts; Extracts

b [lvop at nbody-split. cc:54 in Newton] 0.000s 6.790s

(intel) | 12
Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

VeCtOI’ Advisor: « All the data in one place

* Intel Compiler 15.x reports Integration
* Deep dive analysis

Compéer Vectorization [Vectorized Loops 15|
Function Call Stes and Loops Selt Time Total Time s W e %

Loop Type Wivy No Vectonzation! Gain Esti Vect.. Vectori Tra.. Vector Widths Vector ..
1 W Ploop ot nbody.cc:22 in man| 1364 15 T Vectorzed (Body) 563 AVX Squere Roots; Ins.. 128/256 Flost32; ..
i [leop at nbedy.ccl8 in man)| 0,0005 | 196@m | Scalae innar loop was already vectonzed AVX Shulfles lnsets; . 122/2% Flos32; .

i floop at nbody.cc:97 in main] 0.000s | L86s@m | Scatar plle time ints p - AVX 1287256 Float32..

[Compites Diagnostic Details |

Cause: Internal time limits for the /02 (Windows* OS) or -02 (Linux* OS) optimization level prevented the compiier from determining a vectorization approach for this foop,
Recommendation

. Site Name Site Function Stelnfo Loop-Carmed Dependenci Strides Distnb: Access Pattermn

Line loop_ste 203 rnCRawloops runCRawlocpe.canl06? @RAWD No information avadable No information avadable
2 veid Seweza(size t =, tealloop ste 139 nnCRawloops runCRawloops.coctl? No snformation available PN 36% /29 Moed stodes
2 ocest real deG o :‘ * lloop_ste 160 runCRawloops runCRawloops.cad2 No nformation available 100% /0% /0% All urvet stodes

for | aixe &t L= 0: L

k] 2eal avK = 0, avy e =
% /7 ADETaEs Yectok alieye Memory Access Patterns SR
57 Elfar | slzer)edryecm

© ® Qndew Type Source Modules Alignment #
001 Unit stride tunCRawl.oops. 0of37 lcabsexe

12 = | 22 s &-1) ¢

PIip] (0] += yiiZed2]2

PI3PI[L] #= 2(32432}:

= T 638 i3 4= e[L24321:

% b 439 32 4= £]32+321:

0 real qien2|#P3. @ 00 Unit stride runCRewloops oot lesks exe

6t real movedlEpd @ 00 Unit stride runCRowtoops cocB39 Ioals.exe

:; :”; coaes @ ooo Unit stride runCRand cops. ookl Icals exe .

PO =1] @ 1575 -63; -26; -25; -1: 0;1; 25; 26; 63; 2164801 Varabie stride nunCRawl oops.cocl8 lcalsexe iE I

— &35 81 &= 84~1; ’%
627 11 &= §4-11 i
L¥i plip} (2] += bI3i](41]:
az9 plip) [3] += cl33] [11]:
€30 plip] (2] += plip](2ls -

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Convince the compiler to vectorize

Unvectorized loops / “under vectorized” loops

m Threading and Vectorization Survey & [Intel Advisor XE 2016

summary - GE & Annotation Report Suitability Report # Correctness Report

Filter by Loop Type | Vectorized Filter by Source [All]Z] Filter by Module [AI]Z]
Eznction el == Self Time | Total Time Memory Compiler Vectorization' - - - Compiler Optimizatig
0ps analysis | gop Type Vectorization Message(s) | Gain Estimate
P [loop at mmult_seri... 10.100s Scalar
H I [loop at mmult_serial.cp... 10.100s Scalar
* Assumed dependenCIeS P [loopin _libc_start_mai... 10.100s Scalar
+ Control structures
preventing vectorization. | -
» Rewrite loops to vectorize e
P Total Time)) Vector... Location
— remove COﬂdItIOﬂS, Function Call Sites and Loops % Total Time Self Time Hot Loops Loops Source Loc... | Module
breaks and returns and ~ Total 100.0% 10.100s 0s
. ~ __ libc_start_main 100.0% 10.100s 0Os libc-2.1...
many other technlques. ~ @ [loop in _libc_start_main] 100.0% 10.100s Os libc-2.1...
~main 100.0% 10.100s 0Os mmult_seri... 1_mmul...
< (5 [loop at mmult_serial.cpp:101 in main] 100.0% 10.100s Os e mmult_seri... 1_mmul...
< (5 [loop at mmult_serial.cpp:52 in mai... 100.0% 10.100s 0s) 5SE2 mmult_seri... 1_mmul...
= multiply_d 100.0% 10.100s 0.0600s mmult_seri... 1_mmul ...
P @3 [loop at mmult_serial.cpp:54i ... 99.4% 10.040s 10.0400s e Lo. S5E2 mmult_seri... 1_mmul...

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Deep source and assembly integration

- Y ,..l r . " WAl TAATALI e e el (T e tpiptered 20T,
YotaITum % Loome‘ runCRywlaops comt orerepiphera tatl,

% rurCRawloops - . TR ot £ g Vit L6,
TIMER_START(itimer): f Tioet “iztenvcionernt, 3ot ‘coilizonbivtesce, Lot mmSomeres |

for (ZampIndex_type 1ssap « 0; izaup < ran 226 || & wnCRawtoops - '
1 ninloopVarare - » t

» o Lot ko w ..*«—‘.q [

x[0] =« y[0]:

for (Index type kul ; Rdilemn 7 &¢¢)

[1vep at runCRswloops, txk S An cunlRevhoops)
This L3 scalat loop in runCRavioops.cxx with as
Looy was pot wectorized: veccor dependence prev
LOCP WAS UMROLLED BY 2

" mdubanic_trnng <

T sdubasic_sting <

" [Feiasic_snng < I r St vewie ke] s 155 |

R stasbasic string 4 colLinbon@tatantn(4*he]) = ofSpmernlistl|s) reetunl)] + sipterviiatd{x]. raetien] §3;
= - - ' Attt etalr Gt Lhchon Sy Cal (L0 A0 ol ISTLIN], Bphoheret Lot300], SQoCowtan o (at1n], wists
10 main -~ mancocy)

tmanCRTStary
= BaseThraadinit TH

%[X] = %[k-1] + yik]: 1438 |

ue } s RtilserThreadSts
a9 ‘ it daw .
ana ARBCh cotaniad xuad, seid i (sapeelisiOnTs) 4 ke et v
Selected (Total Tima) 0820 o | BARRIRGGT e 0d -0, ch T D) proRaned) . .
P ceadles wem), taad ‘. e . -
£ " > | frdiat: call ke edd ' U
PO wewn seal, e r e [iiproa s L] .
Y53 amlsy waml, exaf ‘0 o'e |
Address Line Azsembly Total Time % Salf Time % = T it i DY S0 - $ 3
QM4T104e54 520 mov qeord prx [zap0xl20], 9 vt e Bt eno . e -
Q14010de5c 527 call 0x14015b100 <clovk> — e —
Q1401 DdeS1 Block 318:

Q401 0de6) 523 mov dword prr [cap+ix3IbO), Ox0
Q1A 0dedc 522 mov dword prtr [cap+ix3f0], eax
Q14010d4e73 523 mov eax, dword ptr [rsp+ixib0)
Q4N 0de7s 323 oup eax, edi
Q10 0deTe 3523 inl Ox14010£4%> <Block 472>
Q1401 0def2 Block 319;
Q1&010de®2 526 mow rl0, guord ptr [rap+0x120]
Octa010deBs 526 lea rlld, ptr [xboc-Owl]
0014010de8e 526 =m0V eax, rild
Selectad (Total Time)) Dusec v
< o >

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimizing...

Recommendations — How do | fix it?

SIZE:
64B for Intel® Xeon Phi™,
32B for AVX1/2,

Peel/remainder

168B for SSE4.2 and below * Typical vectorized loop consists of
Alignment optimization " Optional “peel” part
ﬁ = Needed to improve alignment
. Alfi+ Ali+ Ali+
| All] 1] 2] 3] = Scalar or slower vector
' - = Main vector part
Addr % SIZE == 0

» Fastest among the three.

_ _ _ % * “remainder” part
Alil Ali+ Ali+ Ali+

1] 2] 3] = Due to trip_count%VL =0

< = Scalar or slower vector.
Addr % SIZE 1=0

« Larger vector register means more

iterations in peel/remainder
Al Ali+ | Ali+ | Ali+
1] 2] 3] = Align your data
Addr % SIZE == ??? ’ = Block to fight remainders

Copyright © 2014, Irtel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Recommendations
_ & survey Repont

E Fiter by Loop Type Vectowmed | Not Vectorized Mark-up inte resting |00ps to move on Filter by Saurce | A1 w Elter by Module AN v
f_::::z; :":‘:p) Sef Timew Total Time 4 o Comgeles Vectonzmion A‘.":mmd W % ¥ X At) = L Comnpler O
- Vactor initruction Set Vectonzstan Trads Vector Width Vector Data Typed

B eep inru .. (e 13801 LJ Loop wat vectorized AV Drvdsioed; Squaes Roots; Insety;, Bxtracts 128925 Float3Z; Flowsd Reordered

t Jloop atwunt 07700 0.770:1 (I vector dependence asumed dependence between line: Unrolled

i Becpinm 07631 14091 O _ 00D WS vectormed AV Drnsons; Squaes Roots; Inserty; Bdracts FloatdZ; Floxtd Feordered

1 [oop st ru .. 0m3m| [¥ 1 <Epandto see mon > AVX Type Comarvans: Inserty; Bxtracts Floatéd Unmlled

G Blecp A 06E0s | 0660:) OO0 wit vectorisd AV vty Floatsd Unralled

&0 Doop v . 0.640: 1 0.640¢1 vi <bpwdtosee mane > AV Type Comarions; Inserts, Btaces Floatdd, mt3z Unrolled
foopinresh .. 609s) 2039 Lig ve AVK Insests Float = Floatbd Reordered

i |loop m rund 0559 | 1.56%; 71 92 AVX et 17856 Float3l: Flowts4 Reordered

o Peep in A 05D | 05631 [Loog war vactorized AV Inaeets 128% Flostd Unrolled

i Jloop atunC .. assl 3260:0 L inner loop was dlready vectoraed AV aerts; Eancts 128/23% Floattd -
< »

Facommendabion)
Issues: |

Recommendations: 2

Issue” Ineffective Peeled/Remainder loop(s) present

All or some source loop itesations are not executing in the loop body. Imprave performance by moving source loop erations from peeled; remainder loops to the loop body, Read more at Clossary and

Yector Easentialy, Utiltzing Full Vecton

Use a smaller vector length
Fotential parformance gain; information not available until Bata
Confidance this recommeniation applies 1o your code Information nat avallable untll Bsta

The campeier chose a vector length, but the trip count might be smaller than that vector length. To fix: Identsfy a smaller vector length using & directive. For C)C+=. Spragas sise vectorlengtn
(%) with N less than actual trip count. For Fortran: IDIAS SIMD VECTORLENGTM

Specify the expected loop trip count
Poteatial performance gain informasion not avallable unol Bets
Confidence this recommendation applies 10 your code Informaniun not wallable batll Beg

The compéler cannot statically detect the trip count. To fix: Specify the expected number of iterations using a directive. For C/Ce» Sprages loo sunt(n) . For Fostran: 1SIRS LOOF COUNT WM.
Read more at User and Reference Cuide for she tntel C+ + Compller 13.0 > Comptler Ref ¢ > Pra > Intel-specific Pragma Reference.

9

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

17

End-user recommendations, performance penalties

. . Mernory
Function Call Sites and Loops Analysis g
H [loop at runBRawloops.cxa118 in runBRawloops)]
H [loop at runBRawloops.coad2 in runBRawloops] =1
H [loop at runCRawloops.coa292 in runCRawloops]]
[[loop at runBRawloops.cxa5S in runBRawloops]]
H A [loop at runOhPRawloops.ooeidd in runOMPRawloopsformp ..] W2
H A [loop at runOhPRawloops.ooei Y in runObPRawloopsformp ..]
F [loop at runOkPRawloops.coa203 in runOMPRawloops$omp ... w1
F M [loop at runOkPRawl oops.coal87 in runOMPRawloops$omp ...] - - -
BV [loop at runOMPRawLoops.cxx:173 in runOMPRawLoops$o ... = 2 & 2 Issue: Peeled/ Rema‘mier |JOD(S_J present — -
.] All or some source loop iterations are not executing in the kernel loop. Improve performance by moving
E [[laop at runOMPRawl oops.c0e139 in runOMPRawLoops$amp .. O W1 7 source loop iterations from peeled /remainder loops to the kernel loop. Read more at Yector Essentials,
F [loop at runOMPRawl oops.coadt in runOMPRawloopsfomps ...] g2 r 8 Utilizing Full Vectors...
H [loop at runCRawloops.oeeT13 in runCRawl oops) =1 @l () Recommendation: Align memory access
H[loop at runOMPFaralllambdaloops.cxnl26 in forall] [l Projected maximum performance gain: High
H A [loop at runBForalllarmbdaloops.ceell? in forall] = Prmectlon_conﬂdence_ Medium .

; The compiler created a peeled loop because one of the memory accesses in the source loop does not
=l [loop at complex:617 in runOMPForaliLambdaloops$omppar ... Wl start at a data boundary. Align the memory access and tell the compiler your memory access is aligned.
H A [loop at runCRawloops.cecl0ld in runCRawloops]] This example aligns memory using a 32-byte boundary:

float *array;
array = (float *)_mm_malloc(ARRAY_SIZE*sizeof(float), 32);

// Somewhere else
_ assume_aligned(array, 32);
/f Use array in loop

_mm_free(array);

Alternative: Declare a static aligned array using __declspec({align(32,8)) float array[ARRAY_SIZE];
and use __assume_aligned(array, 32); before your loop.

) Recommendation: Use a smaller vector length

(intel 18
Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. imizati i

Correctness — Is It Safe to Vectorize?

Loop-carried dependencies analysis

N Check for lcop-carried dependencies in your application &

S D Nefinerrwrt Faports B

g g S sy e Got recommendations to enforce
lzop e & man mainepp s @RAWT AwAR1 Awastt DISTRADNEEEE Movd strides . .
vectorization of the loop:

1. Mark-up the loop and check for
| | Detected dependencies | the presence of REAL
e o dependencies

@
P @ Paewle) sie infoormasy loog nite 6 muincpp torl Yooe o Moty prehlem
3 © Read wfter wirs ffindency loop win 6 crtece.c; mainepp tert Taoe M New
P °

E e S s R s S et R ke 2. Explore dependencies in more
details with code snippets

Are there dependencies in your loop
preventing vectorization?

s cpgidd man tert Tove M ew

EH (if you force the compiler to vectorize
: this could generate incorrect code)

k "
man.cppedl

;;; sl ' Source lines with Read and Write
"1 accesses detected

i'nl:el' 19

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimizing...
Memory Access Patterns — Data Layout Is Key

Vectorizing i-loop Private — good
Almost no alignment requirements

Private: v, c.q, afil, afj]lk], a[b[i]] (#1i, :T) : Any addressing if...

V V V \Y = Not depend on vectorizable loop index
) * Unit-Stride
Unit-stride a[i], c.x[i], *(p++) . Goo_d — with one ex_ception.
Alit | A+ | Afi+ * = Subject to vector alignment
Ali] ;
1] 2] 3] = Qut-of-order cores won'’t store-forward

masked (unit-stride) store. ®

Non-unit-stride: a[2*i], c[i].x, a[i][j], a[i][0] On Intel® Xeon Phi™ correctness

F90 Arrays in most cases prevents efficient implementation of
if not “contiguous” masked (unit-stride) store
A[lz*' Al24i+1] Az @
« Strided, Gather/Scatter is less efficient
Gather/scatter: j = b[i]; a[j], a[b.x[i]] » Perf varies on micro-arch and the actual
index patterns.
a2l . | Alm| . | A . = Big latency is exposed if you have these

on the critical path
= Better if done at outer loop level if loop
nest is vectorized

Copyright © 2014, Irtel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization

Improve Vectorization

Memory Access pattern analysis

Mark-up loops for deeper analysis...

Filter by Loop Type | Vectonzed Not Vectorzed | Filter by Sowrce AN v Filter by Module | AN
Coenpiler Vectonzat ~
Function Call Saes snd Loops SeiTime TotalTwme MeTOY. g
Analysis Locp Type
¥ {loop at slgorthm:3963 in 5314 | 001651 Q01651 | Sealar
Ilovpnloovmtwl(leﬂZGJ 0.00051 1.563s0 — Scalar
Ilovpnkwpsd(po 1007 in 51263 15470 154750 Scalar
loop at locpstlepp: 1085 in 5127.) 001681 0.094s [v] Seatae
%0 [loop ot loopstl.cppe 1068 s127.] 00781 0078] Vectorzed (Body)
#i{ioop at locpsticppi}127in 5128 1 000051 0728t Scalar
L
=P3 9 2 Nonuvtxtndzr nndRyal oops.condl? LCALSStats exe
| =25
| a28 Comglex_type a0t = cOfLtoei]:
|27 Cu-pln_cwe alt = clfithes]
‘xz Complex type 22t = t2[1t0s3] * fzatios
{828
=P Q@ 2 Nereuret stride rundfyaloops.cooddf LCALSSts exe
L /* copgrace nee AD 4
| 437 Conplex type 25 = | £l * alC 4 23 " A2t) * misat ;
LS tO{1td41] = a0t * colamt - iceal T ¥
| 450 /Y coaputs naw AL v/

Eem=———ammeessmsmE T pEmss———aeeees——taeyye—————
Site Name Site Function Site Info Loop-Carried Dependencies Strides Distnbution Access Pattern !
loop_site &6 s114_ loopstl.cpp:3%4 @ No information available
! dunctionat51 | @ No information available
loopstl.cpp:574 @ No information available
loopﬁl.cpp:aht @ No information available

loop_site 8 5118_
loop-site_w $123_ Umt stnde VS non-unit

stride accesses

Misaligned access xfunctional:51 led_oonexe &4 44

_Iy operator() (conat Tys _Left, conat Tys _Right) const

{ // apply operator® to operands
return (_Left * Right): "—_—1 Access to unaligned memory
)

Non-unit nddel(\algorithm:Sl 37 led_ood.exe
ig (_First != _last)
for (; ++ _First != las

1f (_DEBUG_LT(*_Ffound, ®_firs
_Found = _Firsc:
9 return {_Found):
[} Non-unit stride algorithm:5180 led_ond.exe
] Non-unit stride algorithm:5181 led_cod.exe
o Non-unit stride loopstl.cpp:5001 led_ood.exe
Q@ 0 Unit stride loopstl.cpp:4950 led_cxxi.exe
ps. @ 0 Unit stride loopstl.cpp:4964 led_coo.exe
@ps. @ o Unit stride loopstl.cpp:4392 led_ood.exe
@mpPs. @ 0 Unit stride loopstl.cpp:4956 led_oxd.exe
=ps. @0 Unit stride loopstl.cpp:4997 led_cod.exe
14838 index = 1;
4998 max__ = ABS (a[l]): |
T e —
4398 for (1 =2: 1 <=1 _2: +41_) .

intel.
Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. imizati i L"-""

Vectorization Advisor

Providing the data you need for high impact vectorization

Compiler diagnostics + Performance Data = All the data you need in one place
« Find “hot” un-vectorized or “under vectorized” loops.

« Convince the compiler to vectorize
Recommendations — How do | fix it?
Correctness via dependency analysis

* Isit safe to vectorize?

« Data on specific variable causing the loop dependency
Memory Access Patterns analysis

« Unit stride vs Non-unit stride access, Unaligned memory access, etc.

22

(intel
Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. imizati i

Summary: Vector Advisor Alpha

4 Analysis Features for Efficient Vectorization

1. Compiler diagnostics with Performance Data 2. Recommendations on how to improve vectorization
& 2 ssue. Peeled/ Remamder loopis) present

& All of same source 100D ILerATIoNs are NOL executing n the kernel 10op, mprove petformantcs by moving
<'8 source loop iterations from peeled remainder foops 1o the kermel loop. Read more ar Yeoioe Easantials,

ot Tata! _ Commpier Vectorzyron
Funrtian Cof Ster aed Logpse r‘" e
ms . Leap Type Whry Na Wsctomesson?

oMy VECTOr dagendance [wesmety vy rtor

Uuilizing Full Vectors.

Recommendation: Align memory access
Projected maimum pedonmante gain High
Frojection confidence Medium
JaTA Type(3) Mawis Divistons) Spiars MMOTS' WpEthLichs The compiler created a peeled loop because one of the memory accesses m the source loop does not
: ’ i St At & data boundasy, Align the memary ACcess and 18ll the compifer your memory access is alsgned,
This exampde aligns memary using & 32-byte boundary

F[op in nn CForalLsntdal copa| LEC T Bt T
[laop i tn CFersl Lamidal cogo] L1 1744

Sealwt e bog wes wheady vectarised

b, ¢ » o 10004 5840, Haln nantanvdand baop 15 a8 vectnes

bar, thruss stdchae_traes cohae s chars sedzelo.. L0 S440. Sealwr mantandard bao@ s nt 3 Wectones. float *=
arvuy = (f

o ymbof teratoe chanitnact &£, 1O00s 1234 ol nanitandand kog i Mt vectonTs st *) we sallos (ARAY_SIZf*sisenf{flaat), 22);

i [laop 1n itdzbaac_itne,
H 0 0p in 233 um_got <okt

/| Scmmarmre
Snsume_ali

srrey, 333}

)/ Use mrray & sCp
3. Correctness Dependency Analysis 4. Memory Access Patterns Analysis
iSkeMame SeeFuscien Saelnlo Loop Comied Dependancies Strides Dutntumon Accens Prern
foop st 211 menClastoops mnlPawd copecuciitl @ Raw Mo dssmuncn sadetle No inbarmance wekesle
looz ste 19 msClantcoms menCRunlsopecotll Mo iefrrmates svnditse RN N I Ve et
D @ Type Site Name Sources Modules State ;.oa:,m,mu maeChaat cops uthALrn:Lc‘:r.m Mz irterration sssdebie L Iﬂ\ib\ln 7Hl.vnmdn
P1 @ Parallel site information site2 dqtest2.cpp dqtest2 v Not a problem | Midasy Mzaia Pahares
|© LT Type Source Moduer Mgamert
P2 @ Read after wiite dependency site2 dqtest2 cpp dqgtest2 Re New e e e
P3 @ Read after write dependency site2 dqtest2 cpp dqtest2 Re New INUE 15 = (32 & Mol
" ” vl
PS @ Wiite after write dependency site2 dqtest2.cpp dqtest2 Re New "
P6 @ Wiite after read dependency site2 dqtest2 cpp dqtest2 Re New ,f';’ 2 '1;5 P T T Ty T ks mi:m=mm:§ =eioe
=P 57 3 25 L 0L 25 M 63 20 L v e 1 el Rewlocps OonllB e oe
P7 @ Wiite after read dependency site2 dqtest2 cpp: idle.h dgtest2 Re New |INTTT i1 = = =
;;r ;;1,»1;. »- LIS SRR

1'nl:el 23

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel® Advisor XE is part of Intel® Parallel Studio

XE

Intel® Parallel Studio XE 2015
Composer Edition

Intel® Parallel Studio XE 2015
Professional Edition

Intel® Parallel Studio XE 2015
Cluster Edition

Intel® C++ Compiler

Intel® Fortran Compiler

Intel® Threading Building Blocks

Intel® Integrated Performance Primitives
Intel® Math Kernel Library

Intel® Cilk™ Plus

Intel® OpenMP*

Intel® C++ Compiler

Intel® Fortran Compiler

Intel® Threading Building Blocks

Intel® Integrated Performance Primitives
Intel® Math Kernel Library

Intel® Cilk™ Plus

Intel® OpenMP*

Intel® C++ Compiler

Intel® Fortran Compiler

Intel® Threading Building Blocks

Intel® Integrated Performance Primitives
Intel® Math Kernel Library

Intel® Cilk™ Plus

Intel® OpenMP*

Intel® Advisor XE

Intel® Inspector XE
Intel® VTune™ Amplifier XE

Intel® Advisor XE

Intel® Inspector XE

Intel® VTune™ Amplifier XE

Intel® MPI Library

Intel® Trace Analyzer and Collector

For more information: http://intel.ly/perf-tools

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

24

Join the betal
Intel® Advisor XE — Vectorization Advisor

Send e-mail to vector_advisor@intel.com to participate in the Vectorization
Advisor beta.

Limited alpha access is available now under NDA
Public beta is coming late Q1 or Q2 2015

Sign-up now and we will contact you when we have more details.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

mailto:vector_advisor@intel.com

intel)

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

