
dmitry.prohorov@intel.com

mailto:dmitry.prohorov@intel.com

• Overview

• System configuration

• Analysis Configuration

• Analysis Workflow

• Memory Access analysis

• Micro-arch analysis with General Exploration

• Performance Overview with HPC Performance Characterization (tech
preview)

• Basic Hotspots, Concurrency, Locks and Waits

2

Agenda

• Use VTune Amplifier XE 2016 U4 and further (no NDA package required)

• Memory Access analysis
– Memory access problems by memory hierarchy

– High Bandwidth Memory analysis
– Defines if the app is DRAM or MCDRAM bandwidth bound

– Helps to determine data structures worth to allocate to MCDRAM for DRAM bound apps

• Micro-architectural issues with General Exploration analysis
– Explore how efficiently your code passing through the core pipeline

• Performance overview with HPC Performance Characterization
• Important scalability aspects for OpenMP and hybrid MPI+OpenMP apps

− CPU utilization
− Serial vs Parallel time, imbalance, parallel runtime overhead cost, parallel loop parameters

− Memory access efficiency

− FPU utilization (upper bound), FLOPS (upper bound), basic loop vectorization info

• Algorithmic tuning opportunities with Advanced Hotspots

• Advanced measurements with Custom HW EBS event collection

• And more…

3

Overview
Explore Performance on Intel® Xeon Phi™ Processor (KNL Self Boot Linux)

• VTune on KNL works with SEP driver (recommended) or upon perf

• Related to: Advanced Hotspots, Memory Access, General Exploration, HPC Performance Characterization, custom event
analysis

• Perf-based collection limitations:

• Memory Access analysis is enabled with perf starting 2017 Gold

• To enable uncore event collections, system wide collection set under sudo/root:

>echo 0>/proc/sys/kernel/perf_event_paranoid

Pre-requisite for memory access analysis upon perf

Switch to system-wide mode with “analyze-system” option for application to launch to avoid perf collection overhead

• To collect General Exploration or custom event collection with big number of events increase default limit of opened file
descriptors:

In /etc/security/limits.conf increase default number to 100 * <number_of_logic_CPU_cores>:
<user> hard nofile <100 * number_of_logic_CPU_cores>
<user> soft nofile <100 * number_of_logic_CPU_cores>

• Default sampling interval on KNL is 10ms

4

System Configuration
Prerequisites for HW EBS event based collections

Highly
recommended

><mpi_launcher> – n N <vtune_command_line> ./app_to_run

• >srun –n 48 -N 16 amplxe-cl –collect –trace-mpi –r result_dir ./my_mpi_app

• >mpirun –n 48 -ppn 16 amplxe-cl –collect advanced-hotspots –r result_dir ./my_mpi_app

NB: -r <result_dir> is mandatory option for MPI profiling

• Encapsulates ranks to per-node result directories suffixed with hostname

• result_dir.hostname1 with 0-15, result_dir.hostname2 with 16-31, result_dir.hostname3 with 32-47

• Add –trace-mpi option for VTune CL to enable per-node result directories for non-Intel MPIs

• Works for software and Intel driver-based collectors

• Enabled for perf-based collection from 2017 Gold

• Highly recommended to set /proc/sys/kernel/perf_event_paranoid=0 to allow system wide collection to
capture multiple ranks in profiling per node w/o overhead

5

Analysis Configuration (1/4)
How to Run VTune on MPI Applications

Superposition of application to launch and VTune command line for selective
ranks to reduce trace size

Example: profile rank 1 from 0-15:

>mpirun -n 1 ./my_app : -n 1 <vtune_command_line> ./my_app : -n 14 ./my_app

• In the case of Intel MPI launcher –gtool option can be used:

Example: profile ranks 3, 7, 11-13 from 0-15:

>mpirun –gtool “amplxe-cl –collect advanced-hotapots –r result_dir:3,7,11-13” ./my_app

6

Analysis Configuration (2/4)
Selective Rank Profiling

1. Create a VTune project

2. Choose “Arbitrary Targets/Local”

3. Set processor arch and OS

4. Set application name and parameters

5. Check “Use MPI Launcher”

Provide the launcher name, number of ranks,

ranks to profile, set result directory

7

Analysis Configuration (3/4)
MPI Profiling Command Line Generation from GUI

6. Choose analysis type

7. Generate command line

8

Analysis Configuration (4/4)
MPI Profiling Command Line Generation from GUI

Result finalization and viewing on KNL target might be slow

Use the recommended workflow:

1. Run collection on KNL deferring finalization to host:

>amplxe-cl –collect memory-access –no-auto-finalize –r <my_result_dir> ./my_app

2. Finalize the result on the host

• Provide search directories to the binaries of interest for resolving with –search-dir option

>amplxe-cl –finalize –r <my_result_dir> –search-dir <my_binary_dir>

3. Generate reports, work with GUI

>amplxe-cl –report hotspots –r <my_result_dir>

9

Analysis Workflow

• More ranks/threads to load many-core processor -> more data fetching to saturate
computations

• Faster reaching DRAM bandwidth limit (~90GB/s) for BW bound apps and it hurts
performance

• On-package MCDRAM (400Gb/s+) helps to extend BW limit and increase performance

• MCDRAM in cache mode is transparent for a user, might bring additional latency if
working set does not suit MCDRAM size (16GB)

• MCDRAM in flat mode is more flexible – user can control what data to allocate to
MCDRAM

• If working set suits 16GB – use “numactl –m 1” to allocate all data to MCDRAM

• If working set is more than 16GB – use memkind lib to allocate data structures that
induce L2 (LLC on KNL) miss traffic

USE VTUNE TO DEFINE PROPER DATA STRUCTURES FOR MCDRAM ALLOCATION

10

Memory Access Analysis
Motivation

Configuration options:

 Analyze memory objects:

– Enables the instrumentation of memory allocation/de-allocation and mapping
hardware events to memory objects

– May cause additional runtime overhead due to the instrumentation of all system
memory allocation/de-allocation API

 Minimal memory object size to track, in bytes:

– Specify a minimal size of memory allocations to analyze. This option helps reduce
runtime overhead of the instrumentation

 “Evaluate max DRAM Bandwidth” is not enabled on KNL, limits
hardcoded:

– DRAM: 90GB/s

– MCDRAM 350GB/s

Can be adjusted on BW histogram per result if needed

11

Memory Access Analysis
Configuration

>amplxe-cl -c memory-access -knob analyze-mem-objects=true -knob mem-object-size-
min-thres=1024 -- <app>

Memory Access Analysis
High Bandwidth Analysis. Step 1

Explore DRAM Bandwidth Bound metric and histogram on summary to see if
the app is bandwidth bound

12

Significant portion

of application time

spent in high memory

bandwidth utilization

The app may benefit

from MCDRAM

Memory Access Analysis
High Bandwidth Analysis. Step 2

Investigate the memory allocations inducing bandwidth
 “Bandwidth Domain/Bandwidth Utilization Type/Memory Object/Allocation

Stack” grouping with expansion by “DRAM/High” and sorting by L2 Miss Count
Count

13

Focus on allocations
inducing L2 misses

Allocation stack shows
the allocation place in

user’s code

Memory Access Analysis
High Bandwidth Analysis. Step 3

Allocate the data structures to MCDRAM using High Bandwidth Memory

E.g.: specifying a custom memory allocator class from memkind lib for stored vector elements

Or using “numactl –m 1”if the whole working set suits 16 GB

14

Memory Access Analysis
High Bandwidth Analysis. Step 4

Rerun the benchmark

15

DRAM bandwidth significantly decreased

reducing DRAM memory access stalls

Micro-arch analysis with General Exploration

• Execution pipeline slots distribution by
Retiring, Front-End, Back-End, Bad
Speculation

• Second level metrics for each aspect of
execution pipeline to understand the reason
of stalls

16

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Performance Overview with HPC Performance Characterization
Motivation

Show important aspects of application performance in one analysis

 Entry point to assess application efficiency on system resources utilization with definition of the next steps to
investigate pathologies with significant performance cost

 Monitor how parameters of a run or code changes impact important different performance aspects to better
understand their impact on elapsed time

Customers asking

 I eliminated imbalance with dynamic scheduling but elapsed time of my application became worse, why?

 I vectorized the code but don’t have much benefit, why?

 I moved from pure MPI to MPI + OpenMP but the results are much worse, why?

CPU Utilization, Memory efficiency and FPU utilization aspects are correlated – let’s
explore them in one view

 Run HPC Performance Characterization analysis

17

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Performance Overview with HPC Performance Characterization
Motivation

CL

>amplxe-cl –collect hpc-performance <options> ./my_app

>mpirun –n 16 –ppn 4 –collect hpc-performance –r result_dir ./my_mpi_app

GUI

18

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Performance Overview with HPC Performance Characterization
Analysis Structure and Metrics

Two characterization metrics

 Elapsed Time

 GFLOPs Upper Bound*

Three performance aspects

 CPU Utilization

 Memory Bound

 FPU Utilization Upper Bound*

*Calculated based on FLOP HW counters assuming full vector utilization

19

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Performance Overview with HPC Performance Characterization
CPU Utilization

CPU Utilization

 % of “Effective” CPU usage by the
application under profiling (threshold
90%)

– Under assumption that the app should use all
available logical cores on a node

– Subtracting spin/overhead time spent in MPI
and threading runtimes

Metrics in CPU utilization section

 Average CPU usage

 Additional MPI and OpenMP scalability
metrics impacting effective CPU
utilization

 CPU utilization histogram

20

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Performance Overview with HPC Performance Characterization
Memory Bound

Since no memory stall measurement on KNL
“Memory Bound” high level metric replaced with
Backed-Bound with second level based on misses
and bandwidth measurement from uncore events:

 L2Hit Bound

– Cost of L1 misses served in L2

 L2 Miss Bound

– Cost of L2 misses

 MCDRAM Bandwidth Bound

– % of app elapsed time consuming high MCDRAM
Bandwidth

 MCDRAM Bandwidth Bound

– % of app elapsed time consuming high MCDRAM
Bandwidth

 Bandwidth utilization histogram

21

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Performance Overview with HPC Performance Characterization
FPU Utilization

FPU utilization Upper Bound

 % of FPU load (100% - FPU is fully loaded,
threshold 50%)

Metrics in FPU utilization section

– GLOPs broken down by scalar and packed

– Top 5 loops/functions by FPU usage
– Dynamically generated issue descriptions on

low FPU usage help to define the reason and
next steps:

Non-vectorized, vectorized with legacy
instruction set, memory bound limited loops not
benefiting from vectorization etc.

– Vector instruction set, FP ratio and FLOPs per
cycle are available in Grid per
rank/loop/region

22

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Performance Overview with HPC Performance Characterization
FPU Utilization

Since on KNL only SIMD scalar and vector
instruction count enabled w/o vector utilization
info we show FLOP Upper Bound metrics
assuming full vector utilization. FMA is counted
as single instruction so FLOPs multiplied by 2

 % of FPU load (100% - FPU is fully loaded, threshold
50%)

Metrics in FPU utilization section

– GLOPs broken down by scalar and packed

– Top 5 loops/functions by FPU usage
– Dynamically generated issue descriptions on low FPU

usage help to define the reason and next steps:
Non-vectorized, vectorized with legacy instruction set,

memory bound limited loops not benefiting from
vectorization etc.

– Vector instruction set and FLOPs , SIMD ratio, Upper
Bound per cycle are available in Grid per
rank/loop/region

23

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Basic Hotspots, Concurrency, Locks and Waits use instrumentation and
might bring significant overhead on runs with big number of threads

• Recommendation:

• Use Advanced Hotspots instead of Basic Hotspots

• Switch on stacks in Advanced Hotspots configuration if absolutely needed

>amplxe-cl –collect advanced-hotspots –knob collection-detail=stack-sampling ./my_app

• Use HPC Performance Characterization instead of Concurrency and Locks and Waits to assess CPU
utilization of throughput applications

• Only if you have different kinds of locks in one lexical OpenMP region and want to
understand each lock impact – use Locks and Waits and be ready to significant
collection overhead

24

Basic Hotspots ,Concurrency, Locks and Waits

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

25

