(intel.

KNL PROFILING WITH VTUNE AMPLIFIER XE

Dmitry Prohorov ( ), VTune HPC Lead


mailto:dmitry.prohorov@intel.com

Agenda

* Overview

» System configuration

* Analysis Configuration

* Analysis Workflow

 Memory Access analysis

* Micro-arch analysis with General Exploration

 Performance Overview with HPC Performance Characterization (tech
preview)

* Basic Hotspots, Concurrency, Locks and Waits




Overview

Explore Performance on Intel® Xeon Phi™ Processor (KNL Self Boot Linux)

* Use VTune Amplifier XE 2016 U4 and further (no NDA package required)

 Memory Access analysis
— Memory access problems by memory hierarchy

— High Bandwidth Memory analysis
— Defines if the app is DRAM or MCDRAM bandwidth bound
—  Helps to determine data structures worth to allocate to MCDRAM for DRAM bound apps

* Micro-architectural issues with General Exploration analysis
— Explore how efficiently your code passing through the core pipeline

Performance overview with HPC Performance Characterization

Important scalability aspects for OpenMP and hybrid MPI+OpenMP apps
- CPU utilization

Elapsed Time

: 8.454s

Serial vs Parallel time, imbalance, parallel runtime overhead cost, parallel loop parameters

GFLOPS Upper Bound *: 10.333

CPU Utilization

. B6.5% R

- Memory access efficiency

- FPU utilization (upper bound), FLOPS (upper bound), basic loop vectorization info
Algorithmic tuning opportunities with Advanced Hotspots
Advanced measurements with Custom HW EBS event collection
And more...

Memory Bound
L2 Hit Bound
L2 Miss Bound
MCDRAM Flat Bandwidth Bound
DRAM Bandwidth Bound
Bandwidth Utilization Histogram

GFLOPS Upper Bound - 10.333

FPU Utilization Upper Bound

Top 5 hotspot loops (functions) by FPU usage

0.072
0.159 &
0.0%
91.a% i

D01% R

i@. 3




System Configuration

Prerequisites for HW EBS event based collections

* VTune on KNL works with SEP driver (recommended) or upon perf

*  Related to: Advanced Hotspots, Memory Access, General Exploration, HPC Performance Characterization, custom event
analysis

 Perf-based collection limitations:

*  Memory Access analysis is enabled with perf starting 2017 Gold

Jo enable uncore event collections, system wide collection set under sudo/root:
Highly
recommended

>echo 0>/proc/sys/kernel/perf_event_paranoid

Pre-requisite for memory access analysis upon perf

Switch to system-wide mode with “analyze-system" option for application to launch to avoid perf collection overhead

* To collect General Exploration or custom event collection with big number of events increase default limit of opened file
descriptors:

In /etc/security/limits.conf increase default number to 100 * <number_of_logic_CPU_cores>:
<user> hard nofile <100 * number_of_logic_CPU_cores>
<user> soft nofile <100 * number_of_logic_CPU_cores>

« Default sampling interval on KNL is T0ms




Analysis Configuration (1/4)

How to Run VTune on MPI Applications

><mpi_launcher> - n N <vtune_command_line> ./app_to_run
*  >srun-n 48 -N 16 amplxe-cl —collect —trace-mpi -r result_dir ./my_mpi_app
*  >mpirun —-n 48 -ppn 16 amplxe-cl —collect advanced-hotspots -r result_dir./my_mpi_app

mmm) NB: -r <result_dir> is mandatory option for MPI profiling
« Encapsulates ranks to per-node result directories suffixed with hostname

* result_dir.hostname1 with 0-15, result_dir.hostname?2 with 16-31, result_dir.hostname3 with 32-47

mmm) Add -trace-mpi option for VTune CL to enable per-node result directories for non-Intel MPIs
* Works for software and Intel driver-based collectors
* Enabled for perf-based collection from 2017 Gold

» Highly recommended to set /proc/sys/kernel/perf_event_paranoid=0 to allow system wide collection to
capture multiple ranks in profiling per node w/o overhead




Analysis Configuration (2/4)

Selective Rank Profiling

Superposition of application to launch and VTune command line for selective
ranks to reduce trace size

Example: profile rank 1 from 0-15:

>mpirun-n 1./my_app:-n1 <vtune_command_line>./my app:-n14./my_app
* In the case of Intel MPI launcher —gtool option can be used:

Example: profile ranks 3,7, 11-13 from 0-15:

>mpirun —gtool “amplxe-cl —collect advanced-hotapots -r result_dir:3,7,11-13"./my_app




Analysis Configuration (3/4)

MPI Profiling Command Line Generation from GUI

¥ Choose Target and Analysis Type

Create a VTune project © Aty e

" = [ Accessible Targets
n  Intel(R) Processor code named Knights Landing
@ local - >
2. Ch “Arbit T ts/Local” T S —
. 00Sse Arpitrary largets/LOoCa @ o xeon o coprocsor ative | Specity and confgureyourana
@ IntlHl Xeon Phi coprocabsar (host 1; | details.
~ [ Arbit{iry Targets & This target system type is used to produce a command line analysis configuration for the
3 S et p ro Ce S S O r a rc h a n d O S selected micrearchitecture. You cannot start this analysis from the host. To collect data on
"
@ Intel Xeon Phi coprocessor (native the remote system with no connection to the host, copy the generated command line and
run it directly on the remote system.
@ Intel Xeon Phi coprocessor (host L —
. .
Application: my_mpi_app
4. Set appllcatlon name and parameters
Application paramet’ rs:
5.

.| Working directory

C h e C k 1} U Se M P I La u n C h e r” ] o Use application directory as working directory

Use MPI launcher \

Select MPI launcher:

) Intel MPI

Provide the launcher name, number of ranks,
ranks to profile, set result directory

(«) Other: | srun

Number of ranks: |16
Profile ranks:
AL

(+) Selective: |3,7,11-13

osult Location: |my_resutt_dif




Analysis Configuration (4/4

MPI Profiling Command Line Generation from GUI

s B ezl P B WS @ weacome New Amplif... X
M Choose Target and Analysis Type INTEL VTUNE AMPLIFIER XE
& Analysis Target| [eBEURITNES (oM
. A Memory Access Copy '-’
6. Choose analvsis tvpe &t v T
- A Basic Hotspots architactures). This analysis type is basad on the hardware event-based sampling collection. Learn more (F1)
A Advanced Hotspots

=
A This target system type is used to produce a command line analysis configuration For the selected 'u
microarchitecture, You cannot start this analysis from the host, To collect data on the remote system with

- A Locks and Waits na connection k the host, copy the generated command ine and run it directly on the remate system.
e n e rate CO I I I I I I a n I n e B, HPC Performance Characterization € Choose Target
- 1

.8 Concurrency

- Microarchitecture Analysis CPU sampling interval, ms: !

A General Exploration

.

—.fi TSX Exploration Minimal memory object size to track, in bytes:|1024 2

A Memory Access

A TS Hotspots

& SoxXH [¥] Evaluate max DRAM bandwicth
otspots

- Platform Analysis ® Details
A, CPU/GPU Concurrency
A GPU Hotspots y Events canfigured far CPU: Intel(R) microarchitecture code named Broacdwell
v Disk Input and Output :

NOTE: For analysis purpases, Intel VTune Amplifier XE 2017 may adjust the Sample After values in the
table below by a multiplier. The multiplier depends on the value of the Duration time estimate option
specified in the target configuration window.

(& Custam Analysis

Event Name Sample After ~
CPU_CLK_LINHALTED REF_TSC 2000000 Reference cycles
CPU_CLE_UNHALTED. THREAD 2000000 Core cycles when
CVOLE_ACTIVITY. STALLS_L1D_MISS 2000003 Execution stalls v
CVCLE_ACTIVITY. STALLS L2 _MISS 2000003 Execution stalls w
C dline: CVCLE_ACTIVITY STALLS_MEM_ANY 2000003 Execution stalls w
mEnCline: CVCLE_ACTIVITY. STALLS_TOTAL 2000003 Tatal execution s/

B ; 100 _UOPS_MOT_DELIVERED. CORE 2000003 Uops not delivers
srun -n 3 my_mpi_app : -n 1 amplxe-cl -collect memary-access -knob analyze-mem-objects=true -result 1DQ_UOPS_NOT_DELIVERED, CYCLES_0_UOPS_DELTY.CORE 2000003 Cycles per threac
my_result_dir -trace-mpi -- my_mpi_app : -n 3 my_mpi_app : -n 1 amplxe-cl -collect memory-access -knob INST_RETIRED. ANY 000000 Instructions retie
analyze-mem-objects=true -result my_result_dir -trace-mpi -- my_mpi_app : -n 3 my_mpi_app : -n 3 g ponnnna inbs o8
amplee-cl -callect memory-access -knab analyze-mem-objects=true -result my_result_dir -trace-mpi --
my_mpi_app : -n 2 my_mpi_app P [ 2 commandLine..

Copy Clase

[ Use -collect-with action e

Hide knabs with default values




Analysis Workflow

Result finalization and viewing on KNL target might be slow
Use the recommended workflow:
1. Run collection on KNL deferring finalization to host:
>amplxe-cl —collect memory-access —no-auto-finalize —-r <my _result _dir> ./my_app
2. Finalize the result on the host

Provide search directories to the binaries of interest for resolving with —search-dir option
>amplxe-cl —finalize —-r <my _result _dir> -search-dir <my binary_dir>

3. Generate reports, work with GUI

>amplxe-cl —report hotspots —r <my result_dir>




Memory Access Analysis

Motivation

More ranks/threads to load many-core processor -> more data fetching to saturate
computations

Faster reaching DRAM bandwidth limit (~90GB/s) for BW bound apps and it hurts
performance

On-package MCDRAM (400Gb/s+) helps to extend BW limit and increase performance

MCDRAM in cache mode is transparent for a user, might bring additional latency if
working set does not suit MCDRAM size (16GB)

MCDRAM in flat mode is more flexible — user can control what data to allocate to
MCDRAM

* If working set suits 16GB — use “numactl-m 1" to allocate all data to MCDRAM

* If working set is more than 16GB — use memkind lib to allocate data structures that
induce L2 (LLC on KNL) miss traffic

USE VTUNE TO DEFINE PROPER DATA STRUCTURES FOR MCDRAM ALLOCATION

i@ . 10




Memory Access Analysis

Configuration
Configuration options:

= Analyze memory objects:

— Enables the instrumentation of memory allocation/de-allocation and mapping
hardware events to memory objects

— May cause additional runtime overhead due to the instrumentation of all system
memory allocation/de-allocation API

= Minimal memory object size to track, in bytes:

— Specify a minimal size of memory allocations to analyze. This option helps reduce
runtime overhead of the instrumentation

= “Evaluate max DRAM Bandwidth” is not enabled on KNL, limits
hardcoded:

— DRAM: 90GB/s
- MCDRAM 350GBy/s

Can be adjusted on BW histogram per result if needed

™ Choose Target and Analysis Type

A A b A
=l Algorithm Analysis
A Basic Hotspots
A Advanced Hotspots
A Concurrency
A Locks and Waits
A HPC Performance Characterization
=& Microarchitecture Analysis
B General Exploration
Y- Memory Access
A TSX Exploration
A TSX Hotspots
A SGX Hotspots
~IEz Platform Analysis
A CPU/GPU Concurrency

Memory Access.

Measure a set of metrics to identify memory access related issues (for exar
architectures). This analysis type is based on the hardware event-based sam
more (F1)

CPU sampling interval, ms: 10
Analyze memory objects

Minimal memory object size to track, in bytes: |1024

¥ Evaluate max DRAM bandwidth

Analyze OpenMP regions

[G) Details

>amplxe-cl -c memory-access -knob analyze-mem-objects=true -knob mem-object-size-

min-thres=1024 -- <app>

i@ . 11




Memory Access Analysis
High Bandwidth Analysis. Step 1

Explore DRAM Bandwidth Bound metric and histogram on summary to see if
the app is bandwidth bound

INTEL VTUNE AMPLIFIER XE 2017

% Bottom-up | |B& Platform | | & CSRMatrix... || B« stl_vector.h

™ Memory Access Memory Usage viewpoint (change) @

A & Summary

CPU Time 4410.241s
Memory Bound
L2 Hit Rate 0.855
L2 Hit Bound 0.045
- - . . L2 Miss Bound 0.104
Significant portion P TT—

l DRAM Bandwidth Bound 56.5% :

of application time i o

Bandwidth Utilization Histogram

S p e n t I n h I g h I I I e I I I 0 ry This histogram displays a percentage of the wall time the bandwidth was utilized by certain value. Use sliders at the bottom of the listogram to define thresholds for

Low, Medium and High utilization Levels. You can use these bandwidth utilization types in the Bottom-up view to group data and secbll functions executed during a
particular utilization type. To Learn bandwidth capabilities, refer to your system specifications or run appropriate benchmarks to measljre them; for example, Intel Memory

ba n dWi dth u ti l i Zat i on Latency Checker can provide maximum achievable DRAM and GPI bandwidth

Bandwidth Domain: | DRAM, GB/sec - ( \

12s

The app may benefit
from MCDRAM .

6s

Elapsed Time

as

2

0s

o
S

Bandwidth Utilization

i@. 12




Memory Access Analysis
High Bandwidth Analysis. Step 2

Investigate the memory allocations inducing bandwidth

» “Bandwidth Domain/Bandwidth Utilization Type/Memory Object/Allocation
Stack” grouping with expansion by “DRAM/High"” and sorting by L2 Miss Count

 Memory Access Memory Usage viewpoint (change)

aF

23,4
package 0 156
7.6

DRAM Bandwndth, GB/sec

B Collection Log| | & Analysis Target| | © Analysis Type | 5t Summary| BNt ntd B3 Platform | B CSRMatrixh.
5 L2 Miss Count (Memary Allocation) v

INTEL VTUNE AMPLIFIER XE 2017

DRAM Bandwidth, ...
ik Total, GB/sec
4% Read, GB/sec
% Wiite, GB/sec
[]MCDRAM Flat Mod...
[JMCDRAM Cache M...
CICPU Time

Wiewing ¢ Tof1 [ selected stackis)
100.0% (20400612 of 2040061 2)
miniFEx__anu_cecnew sllocatorcdouble>zallocate - new_allocator.h

riniFE sdstd: vector<double, std sllocator<double>2: M allocate and copysdouble*>

miniFEdminiFE-driver<double int int>+0x186 - driverhpp:1 81
miniFE dmain+0:7# - main.cpp:1 78
miniFE._start+0x28 - [unknown source file]

B Memory Access Memory Usage viewpoint (change)

B Collection Log| | @ Analysis Target|  * Analysis Type | H Summary| |¢% Bottor

SU.A‘ Source

Q|| Assembly grouping:

Grouping: | Bandwidth Damain § Bandwidth Utiization Type | Memory Object | Alocation Stack

Bandwidth Domain / Bandhwidth Utiization Type / Memory Object / Allocation Stack |

L2 Miss Countw

FIDRAM, GB/sec

(= High
Fnew_allocatar h:104 (340 MB )

Unknown]
ew_allocatar.h:104 (31 MB)

ew_allocate M (420 MB )

71,002,130)

Stack]
ew_allocator.h:104 {31 MB)
ew_allocator.h:104 (31 MB)
104 {15 MB )

new_allocator |
& Medium
ELow
IDRAM Read, GB/sec
I DRAM Write, GB/sec

Selected 1 row(s):
< >

7541455 [

woid reserve_space {unsigned nrovs, unsigned ncols per row)

& i
a0 rows. resize (nrows) ;
al row_offsets. resize (nrous+l);

92 packed_tols. reserve (nrows * ncols per

#pragua omp parallel for
for (MINIFE_GLOBAL ORDINAL i = 0; i < nrows; ++i) {

rows[i] = 0;

row_offsets[i] = 0;
99 }

Focus on allocations
inducing L2 misses

Allocation stack shows
the allocation place in
user’s code



Memory Access Analysis
High Bandwidth Analysis. Step 3

Allocate the data structures to MCDRAM using High Bandwidth Memory

E.g.: specifying a custom memory allocator class from memkind lib for stored vector elements

typename LocalOrdinal, typename LocalOrdinal,
typename GlobaiQedinal, typename GlobalOrdinal,
typensme ComputeiNode> typename ComputeNode>
struct CSRMatrix { struct CSRMatrix {
typedef Scalor  ScalarType; typedef Scalar  ScalarType;
typedef Loca(Ordinal Locs OrdinalType; typedef LocalOrdinal_LocalOrdinalType;
typedel GlobalOrdinal GlobalOrdinalType; typedef GlobalOrdinal GlobalOrdinalType;
typedef ComputeNode CompuleNodeTyps: typedef ComputeNode ComputeNodeType:
bool has_lecal indices, bool has_| indices;
sidiivector<GlobalOrdinal> rows, std::vector<GlobalOrdinal, hbwmalloc::hbwmalloc_allocator<GlobalOrdinal> > rows;
pidivector<locaiOrdine> tow_offsets; std:ivector<LocalOrdinal, hbwmalloc:hbwmalloc_allocator<GlobalOrdinal> > row._offsets;
stdivector<iocalOrdinab row_offsets _extermal; std::vector<LocalOrdinal, hbwmalloc::hbwmalloc_allocator<GlobalOrdinal> > row_offsets _external;
$1¢;ivector<GlobalOrdinal> packed_cols; std::vector<GlobalOrdinal, hbwmalloc::hbwmalloc_allocator<GlobalOrdinal> > packed_cols;
sdivector<Scalar>  packed coefs; std::vector<Scalar, hbwmalloc::hbwmalloc_allocator<GlobalOrdinal>>  packed_coefs;
LocalOrdinal num_cols; LocalOrdinal num_cals;
ComputeNode® compute,_node; ComputeNode& compute_node;
) Y

Or using “numactl —-m 1"if the whole working set suits 16 GB

i@. 14




Memory Access Analysis
High Bandwidth Analysis. Step 4

Rerun the benchmark

Elapsed Time |: 36.703s
ram

Bandwidth Utili gram
This histogram displays a percentage of the wall time the bandwicth was utilized by cerain value. Use sliders atthe hottam of the This histogram displays a percentage of the wall ime the bandwidth was utili
histogram to defing threshalds for Low, Medium and High utilization levels. You can use these bandwicth utilization types inthe histograr to define thresholds for Low, Mediur and High utilization levels. v
Bottarm-up view 1o group data and see all funclions executed during a particular utiization type. To learm bandwidth capahilities, Battom-up wiew to group data and see all functions executed during a particul
refer to your system specifications or run appropriate benchmarks to measure them: for example, Intel Memaory Latency Checker refer o your system specifications or run appropriate benchmarks to measur
can pravide maximum achisvable DRAM and QP bandwickh. can provide maximum achievable DRAM and QP bandwidth,
Bandwidth Domain: | DRAM, GBfsec v Bandwidth Domain: | DRAM, GB/sec v
16g E 20s E
1454 2 ;
= H
1254 2 1554
g L
105 { B
N 10s
bs
s o
2s
o 0z
s
20
Bandwidth Utilization
Qe : 5 Ié); 155 " [¥IDRAM Bandwidth, ... o !
= ED E— ik Total, GB/sec =
E &1 package 0 ‘g;’ #*% Read, GB/sec package.0 ?:z} ‘
z
&
: DRAM bandwidth significantly decreased
package d 0.2
0.01




Micro-arch analysis with General Exploration

5 General Exploration General Exploration viewpoint (change) @

» Execution pipeline slots distribution by
Retiring, Front-End, Back-End, Bad
Speculation

* Second level metrics for each aspect of
execution pipeline to understand the reason
of stalls

8 CollectionLog| | € Analysis Target Analysis Type | [EEETRIENY

Elapsed Time : 24.340s
Clockticks
Instructions Betired
CPI Fate =
MUK Pelighility
Front-End Bound ~:
ICache Misses
ITLE Owerhead =
BACLEARS ~:
MS Entry
ICache Line Fetch
Bad Speculation “:
Branch Mispredict
SMC tachine Clear
MO Machine Clear Overhead
Back-End Bound :
Memory Latency:
L1 Hit Piate
L2 Hit Piate =
L2 Hit Bound
L2 Miss Bound =
UTLE Overhead

SIMD Compute-to-L1 Access Fatio
SIMD Compute-to-L2 Access Fatio =

Contested Accesses (Intra-Tile)
Page Walk
Memory Reissues:
Split Stores =
Loads Blocked by Store Forwarding

Retiring ~:
Total Thread Court:
Paused Time

1,834,214,751,318
1,032,885,549,326
1776
1.000
65%
0.030
07
0033
0.008
07
0.7%
07%
n.ana
0.000
E36% M

0938 R
0938
0157 R
0141
0004
0894 R
15439
0.000
0027

0.002
0.004
29.1%
185

Os

% Bottom-up

% b

i@. 16




Performance Overview with HPC Performance Characterization
Motivation

Show important aspects of application performance in one analysis

= Entry point to assess application efficiency on system resources utilization with definition of the next steps to
investigate pathologies with significant performance cost

= Monitor how parameters of a run or code changes impact important different performance aspects to better
understand their impact on elapsed time

Customers asking

= | eliminated imbalance with dynamic scheduling but elapsed time of my application became worse, why?
= | vectorized the code but don't have much benefit, why?

= | moved from pure MPI to MPIl + OpenMP but the results are much worse, why?

CPU Utilization, Memory efficiency and FPU utilization aspects are correlated - let's
explore them in one view

=  Run HPC Performance Characterization analysis

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Performance Overview with HPC Performance Characterization
Motivation

CL
>amplxe-cl —collect hpc-performance <options>./my _app

>mpirun —n 16 —ppn 4 —collect hpc-performance -r result_dir./my _mpi_app

I N PO HPC Performance Characterization (preview) Copy

~Il&r Algorithm Analysis Preview feature - should we keep it, change it, or drop it? Send us your comments.

- Basic Hot t
# Basic Ho spots Analyze important aspects of your application performance, incl.uding CPU utilization with additional details on

A Advanced Hotspots OpenMP efficiency analysis, memory usage, and FPU utilization with vectorization information.
For wectorization optimization data, such as trip counts, data dependencies_ and memory access patterns, try
Intel Advisor. It identifies the Loops that will benefit the most from refined vectorization and gives tips for

B Concurrency

A Locks and Waits

. improvements.
Sad 1P C Performance Characterization (preview) The HPC Performance Characterization analysis type is best used for analyzing intensive compute applications.

—l=r Microarchitecture Analysis Learn more (F1)
B Lo L H

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Performance Overview with HPC Performance Characterization
Analysis Structure and Metrics

™ HPC Performance Characterization HPC Performan

Two characterization metrics

B Collection Log| | Analysis Target LNEIEERITE G Summary
= Elapsed Time Elapsed Time ' 101.194s
= GFLOPs Upper Bound* GFLOPS Upper Bound ”: 24.612

Three performance aspects CPU Utilization *: 12.7% &

= CPU Utilization Back-End Bound *: 87.8%

= Memory Bound FPU Utilization Upper Bound “: 1.4% &

» FPU Utilization Upper Bound*

*Calculated based on FLOP HW counters assuming full vector utilization

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



i HPC Performance Characterization (preview) HPC Perf

Performance Overview with HPC Performance Characterization |gee=rm s

GFLOPS Upper Bound : 28.950

CPU Utilization Py iaton: 315

Memory Bound

FPU Utilization Upper Bound “: 0.9% [*

C P U U t I l I Zat I O n M HPC Performance Characterization (preview) HPC Performance Characterization viewpoint (change) @

B8 Collection Log| | @ Analysis Target| | © Analysis Type | [ElTOVNEN o7 Bottom-up

= % of “Effective” CPU usage by the Flepoed Time - da.403e

application under profiling (threshold GPLOPS Upper Bound - 28,950
900/0) CPU Utilization "’z 31.8% [*

Awerage CPU Usage -~ 86.546 Out of 272 logical CPUs
Top OpenMP Processes by MPI Communication Spin Time

. This sectinn lists pracesses satted by MPI Communication Spin time. The lower MF| Communication Spin time, the mare a pracess was on
—_— Under assumptlon that the app should use all & critical path of MPI application exscution. Explare OpanMP sficiency matrics by MPI procasses laying on the critical path
available logical cores on a node Frocess FID WPl Communioation Spinning © (%) OpentP Patential Gain ™ (%) 7 Seral Time @ (%)
PIniFE x (rank 1) 208827 I T6% 04795 11%  18717s M 413% R
. . . . miniFEx (iank 19) 208795 48715 107% 0213 D5%  19762sM d42on R
—_ Subtractlng Sp|nloverhead time Spent 18] MPI miniFE x (rank 33) 208813 5032 112% 03895 08% 159355: 417%;
? . PiniFE x (rank 30 208514 5132 113% 0221s D5%  19780sM 423%
and threading runtimes AFE <ok 1) 206770 same e o
1501005 151% R 5EEEIS N 423 M

WA i appiied to non-summable metrics.

Metrics in CPU utilization section

CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time
adds to the Idle CPU usage value

= Average CPU usage

= Additional MPl and OpenMP scalability
metrics impacting effective CPU
utilization

g
Elapsed Time

Target Utilization

Average CPU Usags

05 1 T T T T

» CPU utilization histogram ——— J—m—

Simultansously Utilized Logical CPUs

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




# HPC Performance Characterization HPC Performan

Performance Overview with HPC Performance Characterization Moo eengss. .
Memory Bou nd GFLOPS Upper Bound *: 24.612

CPU Utilization *: 12.7% &

Back-End Bound ¥: 87.8% &
FPU Utilization Upper Bound “: 1.4% &

™ HPC Performance Characteriz HPC Performance rization viewpoint (change) ® INTEL VTUNE AMPLIFIER XE 2017

Since no memory stall measurement on KNL

“Memory Bound"” high level metric replaced with . g
Backed-Bound with second level based on misses Elapsed Time ® 1011943
and bandwidth measurement from uncore events:

GFLOPS Upper Bound : 24.612

= L2Hit Bound CPU Utilization *: 12.7%
. . Back-End Bound “: 87.8% F
— Cost of L1 misses served in L2 2 it B 0002
L2 Miss Bound 0.071
. MCDRAM Flat Bandwidth Bound 0.0%
n DRAM Bandwidth Bound 23.4%
L2 Miss Bound ot et
Explore bandwidth utilization over time using the histogram and identify memory objects or functions with maximum contribution to the high bandwidth utilization
— Cost of L2 misses N =

Bandwidth Utilization Histogram
This histogram displays a percentage of the wall time the bandwidth was utilized by certain value. Use sliders at the bottom of the histogram to define thresholds fer Low,

n C d d h d Medium and High utilization levels. You can use these bandwidth utilization types in the Bottom-up view to group data and see all functions executed during a particular
MCDRAM Bandwidth Boun tilization type. To Learn bandwidth capabilities, refer to your system specifications or run appropriate benchmarks to measure them; for example, Intel Memary Latency
Checker can provide maximum achievable DRAM and QFI bandwidth
— % of app elapsed time consuming high MCDRAM
Bandwidth

Elapsed Time

= MCDRAM Bandwidth Bound

— % of app elapsed time consuming high MCDRAM
Bandwidth . =l

T T T T
0 20 40 50 80

= Bandwidth utilization histogram [N

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Performance Overview with HPC Performance Characterization

FPU Utilization

FPU utilization Upper Bound

» 9% of FPU load (100% - FPU is fully loaded,
threshold 50%)

Metrics in FPU utilization section
— GLOPs broken down by scalar and packed

— Top 5 loops/functions by FPU usage

— Dynamically generated issue descriptions on
low FPU usage help to define the reason and
next steps:

Non-vectorized, vectorized with legacy
instruction set, memory bound limited loops not
benefiting from vectorization etc.

— Vectorinstruction set, FP ratio and FLOPs per
cycle are available in Grid per
rank/loop/region

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

 HPC Performance Characterization HPC Performan

Elapsed Time “: 101.194s
GFLOPS Upper Bound : 24.612

CPU Utilization : 12.7% &

Back-End Bound “: 87.8% [x

¢ FPU Utilization Upper Bound ~: 1.4% &

FPU Utilization Upper Bound “: 0.9% [%
GFLOPS Upper Bound : 28.950
Scalar GFLOPS Upper Bound 2.322
Packed GFLOPS Upper Bound —: 26628
Top 5 hotspot loops (functions) by FPU usage
This section provides information for the most time consurming loopsfunctions with floating point operations.

Function CPUTime FPU Ltilization Upper Bound ™ Loop Characterization

[Loop atline 573 in miniFE:matvec std<mi

niFE: CSRMatrix<double. int long long?, mi 1466.308
niFE:Wector<double, int, long long> > oper s
atar]

[Loop atline 573 in miniFE:matvec_std<mi

niFE: CSRMatrix<double, int, long lang2, mi 954195

- “ectorized
0%k (Remainder)

Caonsider uzing vector analysis in Intel Advisar for a X

niFE-ector<double.int long long>-oper Sssfcaéssderslanding of instruction-level parallelizm in
atori)

[Loop atline 570 in miniFE:matvec std<mi v

niFE: CSRMatrixe<double, int, long long>, mi P

niFE:ector<double, int, long long> > oper 2733925 BI% N Scalar (Body)
ator)

native irg enable 181.298s 0.0%

[Loop atline 152 in miniFE waspby<miniFE N

Mector<double, int long longs> 15.487s Dz% Scaler (Body)

*MiA is applied to nonsummable medios.




Performance Overview with HPC Performance Characterization

FPU Utilization

Since on KNL only SIMD scalar and vector

% HPC Performance Characterization HPC Performan

Elapsed Time ”: 101.194s
GFLOPS Upper Bound ”: 24.612

CPU Utilization : 12.7% &
Back-End Bound : 87.8% &

!

FPU Utilization Upper Bound ": 1.4% &

instruction count enabled w/o vector utilizati
info we show FLOP Upper Bound metrics

assuming full vector utilization. FMA is counts
as single instruction so FLOPs multiplied by 4

* 9% of FPU load (100% - FPU is fully loaded, threshold
50%)

Metrics in FPU utilization section
— GLOPs broken down by scalar and packed

— Top 5 loops/functions by FPU usage

— Dynamically generated issue descriptions on low F
usage help to define the reason and next steps:
Non-vectorized, vectorized with legacy instruction set,
memory bound limited loops not benefiting from

vectorization etc.

FPU Utilization Upper Bound *: 1.4% [«
GFLOPS Upper Bound : 24612
Scalar GFLOPS Upper Bound @ 0.971
Packed GFLOPS Upper Bound @ 23.641
Top 5 hotspot loops (functions) by FPU usage
This section provides information for the most time censuming leops/functions with

Function CPU Time FP

The code has potential for vectorization improvements, >
Please try the Intel Advior for data and tips to improve
the efficiency of vectorization in your application.

Jlon

[Loop at line 573 in miniFE::matvec_std<miniFE:: CSRMatrix<dou
ble, int. long longz, miniFE:Vector<double, int, long long=>::op  1343.955s
erator(}

[Loop at line 573 in miniFE::matvec_std<miniFE:: CSRMatrix<dou
ble, int, long long>, miniFE::Vector<double, int, long long>>::op 932.465s
erator()

[Loop at line 570 in miniFE::matvec_std<miniFE:: CSRMatrix<dou
ble, int, long long>, miniFE::Vector<double, int, long long>>::op 227.255s
erator()

native_irg_enable 129.108s
[Loop at line 152 in miniFE::waxpby<miniFE::Vector<double, int

. long long>>

113.482s

*N/A & appliad to non<summable metrics.

v
1.4%™  Vectorized (Remainder)

0.4% "™ Vectorized (Body)
saxi Scalar (Body)
0.1%
0.1% Scalar (Body)

— Vectorinstruction set and FLOPs, SIMD ratio, Upper
Bound per cycle are available in Grid per
rank/loop/region

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Basic Hotspots ,Concurrency, Locks and Waits

« Basic Hotspots, Concurrency, Locks and Waits use instrumentation and
might bring significant overhead on runs with big number of threads

e Recommendation:

* Use Advanced Hotspots instead of Basic Hotspots
Switch on stacks in Advanced Hotspots configuration if absolutely needed

>amplxe-cl —collect advanced-hotspots —knob collection-detail=stack-sampling./my_app

* Use HPC Performance Characterization instead of Concurrency and Locks and Waits to assess CPU
utilization of throughput applications

* Only if you have different kinds of locks in one lexical OpenMP region and want to
understand each lock impact — use Locks and Waits and be ready to significant
collection overhead

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS™. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

i@. 25







